this post was submitted on 10 Aug 2023
358 points (96.6% liked)
Asklemmy
43970 readers
818 users here now
A loosely moderated place to ask open-ended questions
Search asklemmy ๐
If your post meets the following criteria, it's welcome here!
- Open-ended question
- Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
- Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
- Not ad nauseam inducing: please make sure it is a question that would be new to most members
- An actual topic of discussion
Looking for support?
Looking for a community?
- Lemmyverse: community search
- sub.rehab: maps old subreddits to fediverse options, marks official as such
- !lemmy411@lemmy.ca: a community for finding communities
~Icon~ ~by~ ~@Double_A@discuss.tchncs.de~
founded 5 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
This is the key with all the machine learning stuff going on right now. The robot will create something, but none of them have a firm understanding of right, wrong, truth, lies, reality, or fiction. You have to be able to evaluate its output because you have no idea if the robot's telling the truth or not at that moment. Images are pretty immune to this because everyone can evaluate a picture for correctness or realism, and even if it's a misleading photorealistic image, well, we've already had Photoshops for a long time. With text, you always have to keep in mind that the robot might be low quality or outright wrong, and if you aren't equipped to evaluate its answers for that, you shouldn't be using it.
Even with images, unless you're looking for it most people will miss glaring problems. It's like that basketball video psychology experiment.
The problem is definitely bigger with LLMs though since you need to be an expert to check the output for validity. I will say when it's right it saves a ton of time, but when it's wrong you need to know enough to tell.