this post was submitted on 06 Jan 2025
-57 points (25.2% liked)

Technology

60560 readers
3628 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


founded 2 years ago
MODERATORS
 

Hear me out. On Reddit, the #solarpunk channel is decidedly anti-blockchain. To me, this is totally surprising and against the actual ethos of Solarpunk - to integrate technology for a bright, clean future.

Granted, blockchains don't have much reputation in alternative circles. And for a good reason. A lot is just linked to scams, get-rich-quick dudes, and speculation, apart from energy consumption arguments.

But blockchain at its core is just a distributed database. One that has no central authority, can not be tampered with, cannot be altered, nor taken down if parametrized accordingly.

This allows - as a potential - to democratize access and value creation. Renewable energy is also fundamentally decentralized. Everyone can participate!

Now, with the costs of renewable energy creation (notably solar) shrunk significantly, and the demand for energy consumption rising heavily, if we only think about the booming electric vehicles alone -

What if people could earn money by generating solar energy and selling directly to vehicles, instead of the grid? I believe this could actually boost renewable energy generation over the roof.

Generators would be rewarded with a blockchain token for the energy generated, while consumers would pay for the energy in those tokens. Therefore speculation would be curbed as the tokens are for a real thing, energy, which on top is a stable unit - kWh.

Of course there are a lot of hurdles here - mostly institutional. Usually, energy is controlled by local authorities. They don't want to allow anyone access to this market.

Then there is the distribution issue. Energy must be transported to the points of consumption, the charging stations. But due to the decentralized nature, this could actually result surprisingly cheap, as instead of transporting large distances, more charging stations in neighborhoods could reduce those distances. But still, this would require upfront charging stations and distribution investments.

I am an engineer. A dreamer. More often than not, as many many others, the realities of markets and economies clash with such ideals, thrashing generally good ideas.

But I wonder if such a scheme could made be possible. Anyone having some good suggestions? I mean mainly from the economics side. How to design the scheme, how to make it so that it is interesting to everyone? There are already several solar energy blockchains, but they kinda failed to get traction.

For the more radicals - I also dream of a money-less Solarpunk future, but to date, it seems further away than ever, looking at the right wing surge everywhere. Maybe we can build bridges at least from the technological side. Thank you if you got so far. Happy to respond to critique and questions.

you are viewing a single comment's thread
view the rest of the comments
[–] Voroxpete@sh.itjust.works 10 points 1 week ago (2 children)

I'm sorry but this is absolute nonsense.

A reasonable energy cost for a single transaction on a modern database is about 0.1J. Even factoring in redudancy and backups, if we're incredibly generous to your argument and multiply that cost by ten, that puts us at 1J. In fact, I'll be ludicrously generous, I'll multiply by 100, so 10J per transaction. That's an absolutely insane cost, but we'll imagine that we're doing this as inefficiently as it is humanly possible to do.

The cost per transaction of Bitcoin sits at around 1,000,000,000J per transaction. Yes, 1 billion joules per transaction. To claim that these are comparable energy costs is like me claiming to be as rich as Elon Musk. Even looking at something like Ethereum, you're still at about 1,000 joules per transaction. Stacked up against our hilariously overestimated energy costs for our traditional database, you're still 100 times over.

(Source: https://link.springer.com/article/10.1007/s12599-020-00656-x)

Also, you can't just blindly ascribe the energy cost of "everything else in the same datacentre" to a standard database driven solution and act as if that's a reasonable comparison. That would be like me adding the total energy cost of every single building where a validator node for your blockchain is running, even if it's just someone's laptop sitting in the corner of a forty story office.

Look, I came into this thread to seriously engage your question, but I cannot let an obvious falsehood like this slide by unchallenged. It is such a gross distortion of the truth that I'm actually struggling to decide if you really believe this, or if you're straight up trolling.

[–] holon_earth@slrpnk.net -5 points 1 week ago (1 children)

The obvious falsehood is dismissing each blockchain by using bitcoin as a reference. I am NOT talking about bitcoin-style Proof-Of-Work transactions whatsoever. Also, the article you mention is from 2020, where Ethereum was also running Proof-Of-Work, like bitcoin. It doesn't anymore. I don't dispute that bitcoin uses incomparable amounts of energy. If you can't see what I am talking about then thanks for engaging but let's not converse any longer.

[–] Voroxpete@sh.itjust.works 6 points 1 week ago (1 children)

I addressed all of this in this other reply: https://sh.itjust.works/comment/15924074

Basically, handwaving at "Ethereum is proof of stake now" just isn't good enough. The difference in scale of power consumption between public ledger blockchains and traditional databases are so vast that even the most optimistic models for reducing their inefficiencies still only get you to "pretty bad" at best.