this post was submitted on 27 Jan 2024
93 points (92.7% liked)
Asklemmy
43945 readers
638 users here now
A loosely moderated place to ask open-ended questions
Search asklemmy ๐
If your post meets the following criteria, it's welcome here!
- Open-ended question
- Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
- Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
- Not ad nauseam inducing: please make sure it is a question that would be new to most members
- An actual topic of discussion
Looking for support?
Looking for a community?
- Lemmyverse: community search
- sub.rehab: maps old subreddits to fediverse options, marks official as such
- !lemmy411@lemmy.ca: a community for finding communities
~Icon~ ~by~ ~@Double_A@discuss.tchncs.de~
founded 5 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
I'll just throw in one good thing for US outlets. The option of GFCI (Ground Fault Circuit Interrupter) outlets. I think it is required in bathrooms (or elsewhere 6 feet from water source), but you can probably install those anywhere you wish. It cuts off the power during a ground fault, which means that some current (more than regular leakage) is flowing to ground, perhaps through a human. It should cut off at just 5mA.
There's something similar in Europe, called RCD (Residual Current Device). It is the same thing, it's just that in US it's generally called GFCI and RCD in Europe. The difference with RCD is that it's not in the outlets, but the breaker box, and generally protects the whole home. But you can also wire GFCI to multiple outlets. The problem is, that trip ground fault current for RCD can be up to 30mA as opposed to GFCI's 5mA. And with 10mA and above, you may not be able to "let go" of the item shocking you, which isn't nice even if it won't yet kill you (probably).
Why is that? Leakage current. That could very well exceed 5mA when you have stuff like a desktop PC, fridge and other stuff connected, resulting in unwanted tripping while everything functions just fine. It also means that perhaps, one day, your fridge may save you by preloading the RCD as it wouldn't trip without it.
OK, now something negative about (some) EU plugs.
Type C:
This should only work for devices that don't require ground due to pin thickness. But you can still get it to make a terrible contact and hold it in. But perhaps you could even force it into some. I dislike this.
Type F:
Oh well. You can probably still force in older plugs that require ground pin yet don't have the contacts for type F sockets like modern plugs. It is also reversible which I hate. Sockets should be polarized. You shouldn't be allowed to just plug in the device other way around. If there is a switch, it definitely should disconnect live wire, not neutral leaving the device live but not functional. That's unsafe. I hate this.
Type E:
This is nice. I like it. It would also be cool if there was a fuse inside the plugs cough cough UK plugs.
Re: GFCI's
At least in my country, GFCI's are required to be fitted in the fuse box, to protect the entire building. Not just rooms which are prone to ground faults. In the American type, the protection is optional.
Regarding Type F:
If you have a monopolar switch in your appliance, you dun fucked up real bad.
Reason is here in Belgium (and a bit of France apparently) and especially around Brussels, it's very common for houses to be wired with two phases (+115/-115V). This was done post-war for copper-saving reasons, and we call this 3x230V. So any device that cuts the brown wire only will still have 115VAC to ground, which is obviously unsafe.
Also more generally there is no guarantee that the live wire is on either side. From what I understand each electrician has their preference, and as long as the wiring is consistent then it's up to code.
So wherever there is an outlet, nothing can be safely assumed by the appliance besides that the total voltage is around 230V AC. Even assuming that there is a ground is incorrect due to old houses still having Type C (which incidentally means that even Type E also is not polarized when plugged into a Type C receptacle!).
There are appliances with only live wire switch? If that is the case it's horrible design, should always cut live and neutral for European reversible plugs
In Italy we have our own version of the type F, the Schuko Bipasso and it's so fucking convenient. (number 2)
It's convenient when plugging in shukos or europlugs, but when plugging in Italian plugs they wiggle so much, as the pin holes are much wider then required, and the pins aren't angled like on europlugs
You can get RCD sockets if you want in the UK (and mainland Europe too). But we generally at the minimum have sockets protected by an RCD (which is the same thing) and in more modern installations all circuits are protected by one.
In my country the differential switch is mandatory, every circuit must be protected, be it from a main one or separate ones for each circuit. I'd be surprised if it weren't the same all over the EU.
For new installations in the UK that's true. But my house, for example was wired in the 1990s and has an RCD only on the sockets (the reasoning I think was that an old style incandescent bulb failing might trip the single RCD taking out the whole house power, but could be wrong).
Since the early 2000's they changed it for new installs to be RCD for all circuits I believe.
Sure, but as far as I could find, even those have trip rating of 30mA. But perhaps I could find some with lower rating.
I think 30ma is about normal. There's a good reason, in an average socket ring (or even radial) you will always get SOME leakage. So there's always going to be a common sense allowance made depending on whether it's a single socket, a small radial or one or more rings.
Yes, and 30mA, even at mains voltage, will not kill someone. Static shocks can vary from 1,000V to 500,000V and are usually around 5mA for reference.
Regarding RCD, where I live they're allowed to be 30mA for wires that do not include outlets, but if an outlet is connected to the switch, the switch must cut off at 3mA..
Regarding the outlets, the type C is old, I haven't seen those installed or sold since at least the early nineties (probably even earlier). I don't understand why it being reversible is bad. I think switches can just cut of both wires, and you're left with the ability to plug it in any way you like. I don't really know whether the switches actually do that or not (or, if they're required to do that). Can this be tested somehow?